Vorträge, Seminare, Ereignisse
A list of all Physics & Astronomy talks and seminars taking place in Heidelberg can be found at HePhySTO.
Upcoming events
Massive stars evolution: Progresses and challenges
Dr Sylvia Ekstroem (University of Geneva)
Heidelberg Joint Astronomical Colloquium ( Home page, Hephysto link )
Philosophenweg 12, Main Lecture hall (gHS)
Show/hide abstract
Abstract
Massive stars are the cosmic engines behind the chemical evolution of the Universe. They are shaping the interstellar medium with their radiative and mechanical feedback. They are the bright beacons dominating the spectra of distant galaxies. Recent puzzling observations from the JWST or gravitational waves observatories call for a careful assessment of our understanding of massive stars physics. Internal transport processes and mass loss play a key role in massive stars evolution, but how well do we know them, and how could we get better constraints? Those unable to attend the colloquium in person are invited to participate online through Zoom (Meeting ID: 942 0262 2849, passcode 792771) using the link: https://eu02web.zoom-x.de/j/94202622849?pwd=dGlPQXBiUytzY1M2UE5oUDRhbzNOZz09 During her visit to Heidelberg, Prof. Ekstroem will be available for meetings by arrangement with her host, Andreas Sander (andreas.sander@uni-heidelberg.de).
Dr Sylvia Ekstroem (University of Geneva)
Heidelberg Joint Astronomical Colloquium ( Home page, Hephysto link )
Philosophenweg 12, Main Lecture hall (gHS)
Show/hide abstract
Abstract
Massive stars are the cosmic engines behind the chemical evolution of the Universe. They are shaping the interstellar medium with their radiative and mechanical feedback. They are the bright beacons dominating the spectra of distant galaxies. Recent puzzling observations from the JWST or gravitational waves observatories call for a careful assessment of our understanding of massive stars physics. Internal transport processes and mass loss play a key role in massive stars evolution, but how well do we know them, and how could we get better constraints? Those unable to attend the colloquium in person are invited to participate online through Zoom (Meeting ID: 942 0262 2849, passcode 792771) using the link: https://eu02web.zoom-x.de/j/94202622849?pwd=dGlPQXBiUytzY1M2UE5oUDRhbzNOZz09 During her visit to Heidelberg, Prof. Ekstroem will be available for meetings by arrangement with her host, Andreas Sander (andreas.sander@uni-heidelberg.de).
Relatively young thick discs in low-mass star-forming spiral galaxies
Natascha Sattler (ARI)
ARI Institute Colloquium ( Hephysto link )
ARI, Moenchhofstrasse 12-14, Seminarraum 1.OG
Show/hide abstract
Abstract
We aim to trace the evolution of eight edge-on star-forming disc galaxies through the analysis of stellar population properties of their (thin and thick) discs. We use Multi-Unit Spectroscopic Explorer (MUSE) observations and full-spectrum fitting to produce spatially resolved maps of ages, metallicities and [Mg/Fe] abundances and extract the star formation histories of stellar discs. Our maps show thick discs that are on average older, more metal-poor and more ?-enhanced than thin discs. However, age differences between thin and thick discs are small (around 2 Gyr) and the thick discs are younger than previously observed in more massive and more quiescent galaxies. Both thin and thick discs show mostly sub-solar metallicities, and the vertical metallicity gradient is milder than previously observed in similar studies. [Mg/Fe] differences between thick and thin discs are not sharp. The star formation histories of thick discs are extended down to recent times, although most of the mass in young stars was formed in the thin discs. Our findings show thick discs that are different from old thick discs previously observed in more massive galaxies or more quiescent galaxies. We propose that thick discs in these galaxies did not form quickly at high redshift, but slowly in an extended time. The thin discs were formed also slowly, but with a larger mass fraction at very recent times.
Natascha Sattler (ARI)
ARI Institute Colloquium ( Hephysto link )
ARI, Moenchhofstrasse 12-14, Seminarraum 1.OG
Show/hide abstract
Abstract
We aim to trace the evolution of eight edge-on star-forming disc galaxies through the analysis of stellar population properties of their (thin and thick) discs. We use Multi-Unit Spectroscopic Explorer (MUSE) observations and full-spectrum fitting to produce spatially resolved maps of ages, metallicities and [Mg/Fe] abundances and extract the star formation histories of stellar discs. Our maps show thick discs that are on average older, more metal-poor and more ?-enhanced than thin discs. However, age differences between thin and thick discs are small (around 2 Gyr) and the thick discs are younger than previously observed in more massive and more quiescent galaxies. Both thin and thick discs show mostly sub-solar metallicities, and the vertical metallicity gradient is milder than previously observed in similar studies. [Mg/Fe] differences between thick and thin discs are not sharp. The star formation histories of thick discs are extended down to recent times, although most of the mass in young stars was formed in the thin discs. Our findings show thick discs that are different from old thick discs previously observed in more massive galaxies or more quiescent galaxies. We propose that thick discs in these galaxies did not form quickly at high redshift, but slowly in an extended time. The thin discs were formed also slowly, but with a larger mass fraction at very recent times.
Extracting the physics of galaxies (and galaxy clusters) with cosmological simulations and machine learning
Annalisa Pillepich (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
I will discuss recent advances in simulation-based inference to extract unobservable properties of galaxies and groups and clusters of galaxies starting from cosmological magneto-hydrodynamical simulations. In particular, I will show results that use the outcome of the IllustrisTNG simulations and of its newest spin-off project that we have developed in Heidelberg: TNG-Cluster. Is it possible to infer the past merger and assembly history of galaxies based on their photometric images? Or can we learn anything about the supermassive black holes at the center of massive galaxy clusters from the maps of their core regions from X-ray spectroscopy? I will give examples of these opportunities, discuss limitations and look ahead.
Annalisa Pillepich (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
I will discuss recent advances in simulation-based inference to extract unobservable properties of galaxies and groups and clusters of galaxies starting from cosmological magneto-hydrodynamical simulations. In particular, I will show results that use the outcome of the IllustrisTNG simulations and of its newest spin-off project that we have developed in Heidelberg: TNG-Cluster. Is it possible to infer the past merger and assembly history of galaxies based on their photometric images? Or can we learn anything about the supermassive black holes at the center of massive galaxy clusters from the maps of their core regions from X-ray spectroscopy? I will give examples of these opportunities, discuss limitations and look ahead.
Planet Migration in Dusty Protoplanetary Disks
Professor Martin Pessah (Niels Bohr Institute, Copenhagen)
Heidelberg Joint Astronomical Colloquium ( Home page, Hephysto link )
Philosophenweg 12, Main Lecture hall (gHS)
Show/hide abstract
Abstract
Fast inward migration of planetary cores embedded in gaseous disks is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been considered until recently. In this talk, I will show that a planetesimal embedded in a dusty disk leads to an asymmetric dust-density distribution that can exert a net torque under conditions relevant to planetary embryos up to several Earth masses. Building on the results or a large suite of numerical simulations for measuring this dust torque under a wide range of conditions, I will present the first study showing that dust torques can have a significant impact on the migration and formation history of planetary embryos. Those unable to attend the colloquium in person are invited to participate online through Zoom (Meeting ID: 942 0262 2849, passcode 792771) using the link: https://eu02web.zoom-x.de/j/94202622849?pwd=dGlPQXBiUytzY1M2UE5oUDRhbzNOZz09 During his visit to Heidelberg, Prof. Pessah will be available for meetings by arrangement with his host, Maria Bergemann (bergemann@mpia.de).
Professor Martin Pessah (Niels Bohr Institute, Copenhagen)
Heidelberg Joint Astronomical Colloquium ( Home page, Hephysto link )
Philosophenweg 12, Main Lecture hall (gHS)
Show/hide abstract
Abstract
Fast inward migration of planetary cores embedded in gaseous disks is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been considered until recently. In this talk, I will show that a planetesimal embedded in a dusty disk leads to an asymmetric dust-density distribution that can exert a net torque under conditions relevant to planetary embryos up to several Earth masses. Building on the results or a large suite of numerical simulations for measuring this dust torque under a wide range of conditions, I will present the first study showing that dust torques can have a significant impact on the migration and formation history of planetary embryos. Those unable to attend the colloquium in person are invited to participate online through Zoom (Meeting ID: 942 0262 2849, passcode 792771) using the link: https://eu02web.zoom-x.de/j/94202622849?pwd=dGlPQXBiUytzY1M2UE5oUDRhbzNOZz09 During his visit to Heidelberg, Prof. Pessah will be available for meetings by arrangement with his host, Maria Bergemann (bergemann@mpia.de).
Big science with small telescopes: galaxy morphologies
Andreas Koch-Hansen (ARI)
ARI Institute Colloquium ( Hephysto link )
ARI, Moenchhofstrasse 12-14, Seminarraum 1.OG
Show/hide abstract
Abstract
Even small-aperture (amateur) telescopes are indespensible for astronomical research. This way, deep exposures of galaxies in the local universe reveal a complexity of substructures. Here I will show selected highlights from a dedicated campaign, the HERON survey, that allowed us to investigate the formation channels of galaxies with some peculiar morphologies such as boxy halos.
Andreas Koch-Hansen (ARI)
ARI Institute Colloquium ( Hephysto link )
ARI, Moenchhofstrasse 12-14, Seminarraum 1.OG
Show/hide abstract
Abstract
Even small-aperture (amateur) telescopes are indespensible for astronomical research. This way, deep exposures of galaxies in the local universe reveal a complexity of substructures. Here I will show selected highlights from a dedicated campaign, the HERON survey, that allowed us to investigate the formation channels of galaxies with some peculiar morphologies such as boxy halos.
TBA
Sophia Vaughan (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Sophia Vaughan (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
From cosmic web to molecular clouds: the multiple scales of galaxy evolution
Professor Amelie Saintonge (Max Planck Institut for Radioastronomy and University College London)
Heidelberg Joint Astronomical Colloquium ( Home page, Hephysto link )
Philosophenweg 12, Main Lecture hall (gHS)
Show/hide abstract
Abstract
The interstellar medium plays a central role in the galaxy evolution process; it is the reservoir that fuels galaxy growth via star formation, the repository of material formed by these stars, and a sensitive tracer of internal and external processes that affect entire galaxies (e.g. accretion and feedback). In this overview talk, I will discuss how observations of the interstellar medium are shedding light on the vast range of physics and scales at play in the star formation and galaxy evolution processes, using results from recent observing campaigns with (sub)mm/radio facilities (IRAM, ALMA, JCMT, APEX) as well as large optical spectroscopic surveys (DESI). By connecting these observations with theory and simulations, a picture emerges where galaxy evolution is driven by gas availability on galactic- and molecular cloud-scales and the efficiency of the star formation process out of this gas, depending on local conditions in the interstellar medium. These results highlight the multi-scale nature of star formation and galaxy evolution, and help draw a path forward to understand mass assembly in the Universe. Those unable to attend the colloquium in person are invited to participate online through Zoom (Meeting ID: 942 0262 2849, passcode 792771) using the link: https://eu02web.zoom-x.de/j/94202622849?pwd=dGlPQXBiUytzY1M2UE5oUDRhbzNOZz09 During her visit to Heidelberg, Prof. Saintonge will be available for meetings by arrangement with her host, Dominika Wylezalek (dominika.wylezalek@uni-heidelberg.de).
Professor Amelie Saintonge (Max Planck Institut for Radioastronomy and University College London)
Heidelberg Joint Astronomical Colloquium ( Home page, Hephysto link )
Philosophenweg 12, Main Lecture hall (gHS)
Show/hide abstract
Abstract
The interstellar medium plays a central role in the galaxy evolution process; it is the reservoir that fuels galaxy growth via star formation, the repository of material formed by these stars, and a sensitive tracer of internal and external processes that affect entire galaxies (e.g. accretion and feedback). In this overview talk, I will discuss how observations of the interstellar medium are shedding light on the vast range of physics and scales at play in the star formation and galaxy evolution processes, using results from recent observing campaigns with (sub)mm/radio facilities (IRAM, ALMA, JCMT, APEX) as well as large optical spectroscopic surveys (DESI). By connecting these observations with theory and simulations, a picture emerges where galaxy evolution is driven by gas availability on galactic- and molecular cloud-scales and the efficiency of the star formation process out of this gas, depending on local conditions in the interstellar medium. These results highlight the multi-scale nature of star formation and galaxy evolution, and help draw a path forward to understand mass assembly in the Universe. Those unable to attend the colloquium in person are invited to participate online through Zoom (Meeting ID: 942 0262 2849, passcode 792771) using the link: https://eu02web.zoom-x.de/j/94202622849?pwd=dGlPQXBiUytzY1M2UE5oUDRhbzNOZz09 During her visit to Heidelberg, Prof. Saintonge will be available for meetings by arrangement with her host, Dominika Wylezalek (dominika.wylezalek@uni-heidelberg.de).
Cracking the relation between mass and 1P-star fraction of globular clusters
Genevieve Parmentier (ARI)
ARI Institute Colloquium ( Hephysto link )
ARI, Moenchhofstrasse 12-14, Seminarraum 1.OG
Show/hide abstract
Abstract
Globular clusters are not the simple stellar populations we used to think they were. The vast majority of them consists of two main populations, dubbed the 1P (pristine) and 2P (polluted) populations, with distinct light-element chemical abundances. How multiple stellar populations unfold remains a riddle. A decade of observations has shown unambiguously that the fraction of 1P stars in clusters, F_1P, is a decreasing function of their present-day mass. That is, the multiple-stellar-population phenomenon is exacerbated in massive clusters. The present-day distribution of Galactic globular clusters in the (mass, F_1P) space must therefore hold clues regarding the formation of their multiple stellar populations. In this talk, I will decipher this distribution, detailing the processes and parameters shaping it.
Genevieve Parmentier (ARI)
ARI Institute Colloquium ( Hephysto link )
ARI, Moenchhofstrasse 12-14, Seminarraum 1.OG
Show/hide abstract
Abstract
Globular clusters are not the simple stellar populations we used to think they were. The vast majority of them consists of two main populations, dubbed the 1P (pristine) and 2P (polluted) populations, with distinct light-element chemical abundances. How multiple stellar populations unfold remains a riddle. A decade of observations has shown unambiguously that the fraction of 1P stars in clusters, F_1P, is a decreasing function of their present-day mass. That is, the multiple-stellar-population phenomenon is exacerbated in massive clusters. The present-day distribution of Galactic globular clusters in the (mass, F_1P) space must therefore hold clues regarding the formation of their multiple stellar populations. In this talk, I will decipher this distribution, detailing the processes and parameters shaping it.
TBA
Evert Nasedkin (TCD)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Evert Nasedkin (TCD)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
TBA
Eric Rohr (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
Eric Rohr (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
TBD
Myriam Benisty (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
Myriam Benisty (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
TBD
Mark McCaughrean (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
Mark McCaughrean (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
TBA
Caroline Dorn (Zürich)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Caroline Dorn (Zürich)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
TBA
Sofia Randich (INAF-Arcetri)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
Sofia Randich (INAF-Arcetri)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
TBD
Hubert Klahr (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
Hubert Klahr (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
TBA
Pierre Cox (IAP)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
Pierre Cox (IAP)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
TBA
Sofia Randich (INAF-Arcetri)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
Signature Speaker
Sofia Randich (INAF-Arcetri)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
Signature Speaker
TBD
Joao Alves (Vienna)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
Joao Alves (Vienna)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
TBD
Gael Chauvin (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
Gael Chauvin (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
TBD
Christine Chen (STScI)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
Christine Chen (STScI)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
TBA
Julia Seidel (ESO)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Julia Seidel (ESO)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
TBA
Oscar Carrion-Gonzalez (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Oscar Carrion-Gonzalez (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
TBA
SDSS-V speaker (TBA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
SDSS-V speaker (TBA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
TBD
Maria Claudia Ramirez-Tannus (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
Maria Claudia Ramirez-Tannus (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBD
TBD
Anna de Graaff (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Anna de Graaff (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
TBA
Hannah Übler (MPE)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
KoCo Signature Speaker
Hannah Übler (MPE)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Show/hide abstract
Abstract
TBA
KoCo Signature Speaker
TBA
Andrew Winter (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Andrew Winter (MPIA)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
TBA
Johanna Vos (TCD)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)
Johanna Vos (TCD)
Königstuhl Kolloquium ( Home page, Hephysto link )
Max-Planck-Institut für Astronomie, Level 3 Lecture Hall (301)